Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations

Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations


B Wodlinger, J E Downey, E C Tyler-Kabara, A B Schwartz, M L Boninger and J L Collinger
Journal of Neural Engineering  2014  Vol. 12
© The Author(s). 2014
Published: 16 December 2014

Abstract
Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain−machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.

The original publication can be found here.


Warning: Trying to access array offset on value of type null in /home3/blackry1/public_html/wp-content/themes/edesign/single.php on line 131

You might also like

Closed-loop stimulation of temporal cortex rescues functional networks and improves memory

Maria Valenzuela

Youssef Ezzyat, Paul A. Wanda, Deborah F. Levy, Allison Kadel, Ada Aka, Isaac Pedisich, Michael R. Sperling, Ashwini D. Sharan, […]

Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans

Maria Valenzuela

Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans Youssef Ezzyat, James E. Kragel, John F. Burke, Deborah […]

Intracortical microstimulation of human somatosensory cortex

Maria Valenzuela

Intracortical microstimulation of human somatosensory cortex Sharlene N. Flesher, Jennifer L. Collinger, Stephen T. Foldes, Jeffrey M. Weiss, John E. […]

Single-trial dynamics of motor cortex and their applications to brain-machine interfaces

Maria Valenzuela

Single-trial dynamics of motor cortex and their applications to brain-machine interfaces Jonathan C. Kao, Paul Nuyujukian, Stephen I. Ryu, Mark […]

Rapid Encoding of New Memories by Individual Neurons in the Human Brain

Maria Valenzuela

Rapid Encoding of New Memories by Individual Neurons in the Human Brain Matias J. Ison, Rodrigo Quian Quiroga, Itzhak Fried […]

Decoding motor imagery from the posterior parietal cortex of a tetraplegic human

Maria Valenzuela

Decoding motor imagery from the posterior parietal cortex of a tetraplegic human Tyson Aflalo, Spencer Kellis, Christian Klaes, Brian Lee, […]

Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior

Maria Valenzuela

Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior Ming Yin, David A. Borton, Jacob Komar, Naubahar Agha, Yao Lu, […]