Stanford News | Thought-Controlled Prosthesis Offers More ‘Tap Precision’

Thought-Controlled Prosthesis Offers More ‘Tap Precision’

03 August 2015

Years of work have yielded a technique that continuously corrects brain readings to give people with spinal cord injuries a more precise way to tap out commands by using a thought-controlled cursor. A pilot clinical trial for human use is underway.

The keyboard (#18/365)

A new brain-controlled cursor that can operate a virtual keyboard is intended to give people with paralysis or Lou Gehrig’s diseasethe ability to run an electronic wheelchair and use a computer or tablet keyboard, says Krishna Shenoy. “Brain-controlled prostheses will lead to a substantial improvement in quality of life.” (Credit: Mr Seb/Flickr)

A new brain-controlled prosthesis is designed to continuously correct brain readings to give people with spinal cord injuries a more precise way to tap out commands.

When we type or perform other precise tasks, our brains and muscles usually work together effortlessly. But when a neurological disease or spinal cord injury severs the connection between the brain and limbs, once-easy motions become difficult or impossible.

Thought-controlled prostheses have given people suffering from injury or disease some restored motor function. Such devices tap into the relevant regions of the brain, bypass damaged connections, and deliver thought commands to devices such as virtual keypads.

But brains are complex. Actions and thoughts are orchestrated by millions of neurons—biological switches that fire faster or slower in dynamic patterns.

Quality of life

Brain-controlled prostheses currently work with access to a sample of only a few hundred neurons, but need to estimate motor commands that involve millions of neurons. So tiny errors in the sample—neurons that fire too fast or too slow—reduce the precision and speed of thought-controlled keypads.

Now researchers have developed a technique to make brain-controlled prostheses more precise. In essence the prostheses analyze the neuron sample and make dozens of corrective adjustments to the estimate of the brain’s electrical pattern – all in the blink of an eye.

The team tested a brain-controlled cursor meant to operate a virtual keyboard. The system is intended for people with paralysis and amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, which degrades a person’s ability to move. The thought-controlled keypad would allow a person with paralysis or ALS to run an electronic wheelchair and use a computer or tablet.

“Brain-controlled prostheses will lead to a substantial improvement in quality of life,” says Krishna Shenoy, an electrical engineer at Stanford University. “The speed and accuracy demonstrated in this prosthesis results from years of basic neuroscience research and from combining these scientific discoveries with the principled design of mathematical control algorithms.”

Brain dynamics

The new corrective technique is based on a recently discovered understanding of how monkeys naturally perform arm movements. The researchers studied animals that were normal in every way. The monkeys used their arms, hands, and fingers to reach for targets presented on a video screen. What the researchers sought to learn through hundreds of experiments was what the electrical patterns from the 100- to 200-neuron sample looked like during a normal reach. In short, they came to understand the “brain dynamics” underlying reaching arm movements.

“These brain dynamics are analogous to rules that characterize the interactions of the millions of neurons that control motions,” says Jonathan Kao, a doctoral student in electrical engineering and first author of the study that is published in the journal Nature Communications. “They enable us to use a tiny sample more precisely.”

In the new experiments, the researchers distilled their understanding of brain dynamics into an algorithm that could analyze the measured electrical signals that their prosthetic device obtained from the sampled neurons. The algorithm tweaked these measured signals so that the sample’s dynamics were more like the baseline brain dynamics. The goal was to make the thought-controlled prosthetic more precise.

To test this algorithm they trained two monkeys to choose targets on a simplified keypad. The keypad consisted of several rows and columns of blank circles. When a light flashed on a given circle the monkeys were trained to reach for that circle with their arms.

Virtual taps

To set a performance baseline the researchers measured how many targets the monkeys could tap with their fingers in 30 seconds. The monkeys averaged 29 correct finger taps in 30 seconds.

The real experiment only scored virtual taps that came from the monkeys’ brain-controlled cursor. Although the monkey may still have moved his fingers, the researchers only counted a hit when the brain-controlled cursor, corrected by the algorithm, sent the virtual cursor to the target.

The prosthetic scored 26 thought-taps in 30 seconds, about 90 percent as quickly as a monkey’s finger. (Watch video of hand- versus thought-controlled cursor taps

Thought-controlled keypads are not unique to Shenoy’s lab. Other brain-controlled prosthetics use different techniques to solve the problem of sampling error. Of several alternative techniques tested, the closest resulted in 23 targets in 30 seconds.

Next steps

The goal of all this research is to get thought-controlled prosthetics to people with ALS. Today these people may use an eye-tracking system to direct cursors or a “head mouse” that tracks the movement of the head. But both are fatiguing to use and neither offers the natural and intuitive control of readings taken directly from the brain.

[related]

The US Food and Drug Administration recently gave Shenoy’s team the green light to conduct a pilot clinical trial of their thought-controlled cursor on people with spinal cord injuries.

“This is a fundamentally new approach that can be further refined and optimized to give brain-controlled prostheses greater performance, and therefore greater clinical viability,” Shenoy says.

Paul Nuyujukian, a postdoctoral researcher in neurosurgery and electrical engineering at Stanford; Stephen Ryu, a neurosurgeon with the Palo Alto Medical Foundation and consulting professor of electrical engineering; and Mark Churchland, assistant professor of neuroscience and John Cunningham, assistant professor of statistics, both at Columbia University, are coauthors of the study.

The National Institutes of Health and the Defense Advanced Research Projects Agency funded the work.

Source: Stanford University

Original Study DOI: 10.1038/ncomms8759


Warning: Trying to access array offset on value of type null in /home3/blackry1/public_html/wp-content/themes/edesign/single.php on line 131

You might also like

BCI-Gaming Milestone Published in Nature Medicine

Jessica Nani

A participant with Blackrock implants played a video game using multi-finger decoded movements, marking a major advance in recreational BCIs. […]

Neurotechnology study delivers ‘another level’ of touch to bionic hands

Jessica Nani

Clive Cookson | Financial TimesFinancial Times profiled the University of Chicago’s neuroprosthetic system using Blackrock implants to restore sensation in […]

Intracortical recordings reveal the neuronal selectivity for bodies and body parts in the human visual cortex

Jessica Nani

Groundbreaking research published in PNAS using Blackrock Neurotech’s Utah Array technology to record, for the first time ever, shows how […]

The quest to build bionic limbs that feel like the real thing

Jessica Nani

Fred Schwaller | Nature News Feature Through brain implants, neural interfaces and skin grafts, researchers are starting to restore sensation […]

A.L.S. Stole His Voice. A.I. Retrieved It

Jessica Nani

Last month, Casey Harrell’s story of regained communication using our brain-computer interface made headlines. Today, we want to spotlight the […]

The state of clinical trials of implantable brain–computer interfaces

Jessica Nani

We are thrilled to share a comprehensive review of implantable brain-computer interfaces (iBCIs) published in Nature Portfolio Reviews Bioengineering, authored […]

Tether-Backed Blackrock Neurotech Restores ALS Patient’s Voice with Brain-Computer Interface

Jessica Nani

Deniz Saat | BTC Times In a significant advancement in medical technology, a patient with amyotrophic lateral sclerosis (ALS) has […]

Using AI and Brain Implants, Researchers Reconnect ALS Patient with Their Lost Voice

Jessica Nani

Conor Hale  | Fierce Biotech UC Davis researchers used Blackrock’s NeuroPort Array to restore speech to a patient with ALS, […]

Brain-to-Speech Tech Good Enough for Everyday Use Debuts in a Man with ALS

Jessica Nani

Ingrid Wickelgren | Scientific American A highly robust brain-computer interface boasts low error rates and a durability that allows a user […]