Intracortical microstimulation of human somatosensory cortex

Intracortical microstimulation of human somatosensory cortex


Sharlene N. Flesher, Jennifer L. Collinger, Stephen T. Foldes, Jeffrey M. Weiss, John E. Downey, Elizabeth C. Tyler-Kabara, Sliman J. Bensmaia, Andrew B. Schwartz, Michael L. Boninger, and Robert A. Gaunt*
Science Translational Medicine  2016  Published Online
© The Author(s). 2016
Published: 19 October 2016

A sense of touch
Touch is essential for hand use. Yet, brain-controlled prosthetic limbs have not been endowed with this critical sense. In a new study by Flesher et al., microelectrode arrays were implanted into the primary somatosensory cortex of a person with spinal cord injury and, by delivering current through the electrodes, generated sensations of touch that were perceived as coming from his own paralyzed hand. These sensations often felt like pressure, could be graded in intensity, and were stable for months. The authors suggest that this approach could be used to convey information about contact location and pressure necessary for prosthetic hands to interact with objects.

Abstract
Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show that microstimulation within the hand area of the somatosensory cortex of a person with long-term spinal cord injury evokes tactile sensations perceived as originating from locations on the hand and that cortical stimulation sites are organized according to expected somatotopic principles. Many of these percepts exhibit naturalistic characteristics (including feelings of pressure), can be evoked at low stimulation amplitudes, and remain stable for months. Further, modulating the stimulus amplitude grades the perceptual intensity of the stimuli, suggesting that intracortical microstimulation could be used to convey information about the contact location and pressure necessary to perform dexterous hand movements associated with object manipulation.

The original publication can be found here.


Warning: Trying to access array offset on value of type null in /home3/blackry1/public_html/wp-content/themes/edesign/single.php on line 131

You might also like

BCI-Gaming Milestone Published in Nature Medicine

Jessica Nani

A participant with Blackrock implants played a video game using multi-finger decoded movements, marking a major advance in recreational BCIs. […]

Moving beyond single-electrode intracortical-microstimulation-evoked tactile perception

Jessica Nani

How can we get bionic limbs to provide touch that feels closer to natural sensation? A recent study led by […]

Intracortical recordings reveal the neuronal selectivity for bodies and body parts in the human visual cortex

Jessica Nani

Groundbreaking research published in PNAS using Blackrock Neurotech’s Utah Array technology to record, for the first time ever, shows how […]

The quest to build bionic limbs that feel like the real thing

Jessica Nani

Fred Schwaller | Nature News Feature Through brain implants, neural interfaces and skin grafts, researchers are starting to restore sensation […]

The state of clinical trials of implantable brain–computer interfaces

Jessica Nani

We are thrilled to share a comprehensive review of implantable brain-computer interfaces (iBCIs) published in Nature Portfolio Reviews Bioengineering, authored […]

Using AI and Brain Implants, Researchers Reconnect ALS Patient with Their Lost Voice

Jessica Nani

Conor Hale  | Fierce Biotech UC Davis researchers used Blackrock’s NeuroPort Array to restore speech to a patient with ALS, […]

Speech BCI Achieves 62 WPM

Jessica Nani

A Nature paper showcased a speech BCI using Blackrock implants that enabled a participant with ALS to communicate at 62 […]

Closed-loop stimulation of temporal cortex rescues functional networks and improves memory

Maria Valenzuela

Youssef Ezzyat, Paul A. Wanda, Deborah F. Levy, Allison Kadel, Ada Aka, Isaac Pedisich, Michael R. Sperling, Ashwini D. Sharan, […]