Intracortical microstimulation of human somatosensory cortex

Intracortical microstimulation of human somatosensory cortex


Sharlene N. Flesher, Jennifer L. Collinger, Stephen T. Foldes, Jeffrey M. Weiss, John E. Downey, Elizabeth C. Tyler-Kabara, Sliman J. Bensmaia, Andrew B. Schwartz, Michael L. Boninger, and Robert A. Gaunt*
Science Translational Medicine  2016  Published Online
© The Author(s). 2016
Published: 19 October 2016

A sense of touch
Touch is essential for hand use. Yet, brain-controlled prosthetic limbs have not been endowed with this critical sense. In a new study by Flesher et al., microelectrode arrays were implanted into the primary somatosensory cortex of a person with spinal cord injury and, by delivering current through the electrodes, generated sensations of touch that were perceived as coming from his own paralyzed hand. These sensations often felt like pressure, could be graded in intensity, and were stable for months. The authors suggest that this approach could be used to convey information about contact location and pressure necessary for prosthetic hands to interact with objects.

Abstract
Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show that microstimulation within the hand area of the somatosensory cortex of a person with long-term spinal cord injury evokes tactile sensations perceived as originating from locations on the hand and that cortical stimulation sites are organized according to expected somatotopic principles. Many of these percepts exhibit naturalistic characteristics (including feelings of pressure), can be evoked at low stimulation amplitudes, and remain stable for months. Further, modulating the stimulus amplitude grades the perceptual intensity of the stimuli, suggesting that intracortical microstimulation could be used to convey information about the contact location and pressure necessary to perform dexterous hand movements associated with object manipulation.

The original publication can be found here.


Warning: Trying to access array offset on value of type null in /home3/blackry1/public_html/wp-content/themes/edesign/single.php on line 131

You might also like

Closed-loop stimulation of temporal cortex rescues functional networks and improves memory

Maria Valenzuela

Youssef Ezzyat, Paul A. Wanda, Deborah F. Levy, Allison Kadel, Ada Aka, Isaac Pedisich, Michael R. Sperling, Ashwini D. Sharan, […]

Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans

Maria Valenzuela

Direct Brain Stimulation Modulates Encoding States and Memory Performance in Humans Youssef Ezzyat, James E. Kragel, John F. Burke, Deborah […]

Single-trial dynamics of motor cortex and their applications to brain-machine interfaces

Maria Valenzuela

Single-trial dynamics of motor cortex and their applications to brain-machine interfaces Jonathan C. Kao, Paul Nuyujukian, Stephen I. Ryu, Mark […]

Rapid Encoding of New Memories by Individual Neurons in the Human Brain

Maria Valenzuela

Rapid Encoding of New Memories by Individual Neurons in the Human Brain Matias J. Ison, Rodrigo Quian Quiroga, Itzhak Fried […]

Decoding motor imagery from the posterior parietal cortex of a tetraplegic human

Maria Valenzuela

Decoding motor imagery from the posterior parietal cortex of a tetraplegic human Tyson Aflalo, Spencer Kellis, Christian Klaes, Brian Lee, […]

Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations

Maria Valenzuela

Ten-dimensional anthropomorphic arm control in a human brain−machine interface: difficulties, solutions, and limitations B Wodlinger, J E Downey, E C […]

Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior

Maria Valenzuela

Wireless Neurosensor for Full-Spectrum Electrophysiology Recordings during Free Behavior Ming Yin, David A. Borton, Jacob Komar, Naubahar Agha, Yao Lu, […]