
630 Komas Drive | Suite 200
Salt Lake City | UT 84108 | USA
P +1 801.582.5533 | F +1 801.582.1509
www.blackrockmicro.com

Revision 3.00 / LB-590

cbMEX
Instructions for Use

Revision 3.00 / LB-0590

2

Contents
Contents .. 2

Welcome! .. 3

System Requirements ... 3

Installation .. 3

Use Cases .. 4

Getting Started .. 4

Basic Online Data Monitoring & Analysis ... 5

Conventions .. 7

Commands .. 8

OPEN ... 8

CLOSE .. 10

FILECONFIG ... 11

CONFIG .. 13

TRIALCONFIG ... 15

TRIALDATA .. 17

TIME .. 19

DIGITALOUT .. 20

CHANLABEL ... 22

MASK ... 23

COMMENT .. 24

ANALOGOUT ... 25

TRIALCOMMENT ... 27

TRIALTRACKING ... 28

CCF .. 29

SYSTEM .. 30

Using cbMEX on OSX ... 31

Troubleshooting .. 33

Warranty ... 35

Support.. 35

Example Scripts ... 36

Revision 3.00 / LB-0590

3

Welcome!
Thank you for choosing Blackrock Microsystems!

Inside this manual, you will find information on the cbMEX library, a utility that reads Blackrock
Microsystems Neural Signal Processor (NSP) data packets into MATLAB and enables researchers
to perform online processing and analysis of their data as well as programmatically control and
communicate with their NSP using MATLAB.

This manual will cover the system requirements, associated hardware, and an overview of the
most important commands within the library.

For questions on this product or any other Blackrock products, contact our 24/7 support service:
support@blackrockmicro.com

System Requirements
The specifications listed below are the minimum required for the software to run as intended.

• Microsoft Windows 7 (32-bit or 64-bit)

• AMD or Intel 2.0GHz Quad Core CPU

• 4 GB of RAM

• Gigabit (1 Ghz) Ethernet Adapter or USB 2.0 Port (for communicating with Blackrock
Microsystems’ Data Acquisition Systems)

Installation
cbMEX is automatically installed alongside the Central Software Suite. The required files will be
in Central’s installation directory. Please add Central’s installation directory to MATLAB’s search
path to ensure full functionality: instructions on modifying the MATLAB search pathway can be
found at https://www.mathworks.com/help/matlab/matlab_env/add-remove-or-reorder-
folders-on-the-search-path.html. By default, this directory is: C:\Program Files\Blackrock
Microsystems\XXXX Windows Suite (XXXX may be either NeuroPort, Cerebus, or CerePlex Direct
depending on your device).

The exact method of adding to MATLAB’s search path may differ between versions of MATLAB—
refer to your specific version’s documentation if the above instructions do not work.

https://www.mathworks.com/help/matlab/matlab_env/add-remove-or-reorder-folders-on-the-search-path.html
https://www.mathworks.com/help/matlab/matlab_env/add-remove-or-reorder-folders-on-the-search-path.html

Revision 3.00 / LB-0590

4

Use Cases
The cbMEX library has the following typical use cases:

• Read spike timestamps and continuous sample data as well as other data coming
through the analog and digital inputs. For Cerebus and CerePlex Direct systems, it can
also read data from the optional video tracking system (NeuroMotive).

• Start and stop file recording programmatically based on analysis of the data

• Programmatically control channel configuration, channel labels, comments, and
digital outputs

Getting Started
Use the open command to initialize the Matlab interface:

The above output is shown when cbmex(‘open’) has successfully connected through Central. See
the section on ‘open’ for more detail on active parameters and output. For cbMEX to connect
through Central successfully, Central must be open and running when cbmex('open') is called.

When ‘trialconfig’ is executed with the active parameter set to 1, cbMEX begins to read data into
a buffer. By default, the event data buffer is 16384 events per channel and the continuous
sampling buffer defaults to 102400 samples per channel (about 3 seconds at the Neural Signal
Processor’s sample rate of 30khz). The buffer will not accept any new data beyond this point, so
choose an appropriate read delay to clear the buffer frequently enough.

Calling ‘trialdata’ reads the data currently contained in the buffer and can optionally return that
data as a MATLAB variable.

Revision 3.00 / LB-0590

5

In the above example, ‘trialconfig’ is called after channels are configured (see section on ‘config’
for more detail) and the trial length is set. Upon call of ‘trialconfig,’ MATLAB initializes the data
buffer and begins filling the buffer with data. Data collection is configured to continue for five
seconds: within this five seconds, cbMEX pauses for half a second, allowing time for data to fill
the buffer. Channel 7 is configured to sample continuously at 30,000 kHz on channel 7), so we
can buffer for about 3 seconds before the continuous buffer fills up.

Once the pause is over, ‘trialdata’ is called to read the previous half-seconds’ worth of data, then
flush the buffer (see section ‘trialdata’ for more information). ‘trialdata’ returns a cell array of
event data, the time of call, and a cell array of continuous data (shown below).

Basic Online Data Monitoring &
Analysis
Data that is read from ‘trialdata’ can be used for online monitoring and analysis during the
recording using some of cbMEX’s other features. The following example demonstrates use of
cbMEX to conduct basic online data reading/analysis.

Revision 3.00 / LB-0590

6

During each read-flush cycle begun by ‘trialdata’, data from the buffer is read and the number of
channels that have spike activity is determined. Before initiating the next buffer cycle, a
command line output is generated stating the number of channels that displayed spike activity
during that cycle.

Revision 3.00 / LB-0590

7

Conventions
< > Used to denote optional parameters.

<key, value> Pairs are optional; some pairs do not require values. From left to right

parameters will override previous ones or combine with them if possible.

Revision 3.00 / LB-0590

8

Commands

OPEN
[<connection> <instrument>] = cbmex('open', <interface>, <key, value>);

Use the ‘open’ command to initialize cbMEX and connect to the system through Central or UDP.
The command line will print out the current cbMEX version, protocol version and NSP version
numbers. You may specify which connection method (Central or UDP) to use with the <interface>
parameter. To connect through Central, Central must be running when ‘open’ is called. If no
parameter or 0 (default) is used, the interface first tries connecting through Central and if that
fails, tries connecting using the UDP interface.

The application can connect to multiple instruments at once (up to 4) using ‘instance.’ You may
also connect to an NSP by specifying the address and port of those instruments using ‘inst-addr’
and ‘inst-port,’ or specifying the address and port of your application or Central to which the
instrument will send its data using ‘central-addr’ and ‘central-port.’

Inputs
<interface> 0: (Default) Try Central 1st then UDP

1: Connect using Central
2: Connect using UDP

<key, value>

'instance' Library instance, numbered 0 (default) to 3
'inst-addr' String containing the instrument’s ipv4 address (default is

192.168.137.128)
'inst-port' Control port number (default is 51001)
'central-addr' String containing the ipv4 address of the Central instance

(default is 192.168.137.X where X is 1 through 16 and can
be found in Network Devices)

'central-port' Broadcast port number (default is 51002)

Outputs
<connection> 1 - Connected to Central

2 - Connected via UDP
<instrument> 0 - Connected to an NSP

1 - Connected to nPlay running on the same PC
2 - Connected to an NSP running on the NSP hardware
 (i.e., connected to a CerePlex Direct)
3 - Connected to nPlay running on a separate PC

 (Broadcasting)

Revision 3.00 / LB-0590

9

Examples
%Default is to try Central, then UDP

cbmex('open')

%connect through Central only; specify the ipv4 address of Central

cbmex('open', 1, 'central-addr', '192.168.137.1');

%connect to a second NSP on the same computer

cbmex('open', 1, 'central-addr', '192.168.137.17',’instance’,1);

%connect to a third NSP on the same computer

cbmex('open', 1, 'central-addr', '192.168.137.33',’instance’,2);

Revision 3.00 / LB-0590

10

CLOSE
cbmex('close', <key, value>);

This command closes an instance of the library. Up to 4 unique instances may be open at once in
an cbMEX and with ‘close’ you can specify an instance to close or have instance default to 0.

Inputs
<key, value>

'instance' Library instance, numbered 0 (default) to 3.

Outputs
None

Examples
% Close the default interface to NSP

cbmex('close');

% Close a specific instance

cbmex('close', 'instance', 1);

Revision 3.00 / LB-0590

11

FILECONFIG
cbmex('fileconfig', filename, comments, action, <key, value>) ;

Starts or stops file recording. The filename and comments are specified. The filename can
contain the full path to the filename. If the path doesn’t exist, it will be created.

Inputs

filename File name string (255 character maximum)
comments File comment string (255 character maximum)
action 1 starts recording

0 stops recording

<key, value>

'instance' Library instance, numbered 0 (default) to 3.
 'option' Value can be any of the following:

'close' – closes the File dialog if open
'open' – opens the File dialog if closed, ignoring other
parameters
'none' – opens the File dialog if closed, sets parameters
given, starts or stops recording

Outputs
<recording> Unavailable if using any ‘option’ parameters

1 – recording is in progress
0 – recording is not in progress

<filename> recording file name; unavailable if using any ‘option’
parameters

<username> recording user name; unavailable if using any ‘option’
parameters

Note: output may have 1 (<recording>) or 3 (<recording> ,<filename>,<username>) values.

Examples

% Start file recording the specified file

cbmex('fileconfig', 'c:\data\20120420', '', 1);

% Start file recording the specified file with a comment

cbmex('fileconfig', 'c:\data\20120420', 'First trial with Fred', 1);

% Stop recording

cbmex('fileconfig', 'c:\data\20120420', '', 0);

Revision 3.00 / LB-0590

12

% Start file recording, open the File dialog,

cbmex('fileconfig', 'c:\data\20120420', '', 1, 'option', 'open');

% Return recording status, output file and user name

[rec filename username] = cbmex('fileconfig');

% Return recording status on a specific instance

rec = cbmex(‘fileconfig’, ‘instance’, 1);

Revision 3.00 / LB-0590

13

CONFIG
config_cell_array = cbmex('config', channel, <key, value>);

This command is used to return the channel configuration and optionally set new channel
configurations for a given channel. Parameter values are in raw format.
Although the firmware will reject most invalid parameter settings, setting an invalid configuration
for a channel may cause unpredictable behavior. It is strongly recommended not to modify
parameters that are not immediately relevant.
Changing a parameter during recording may lead to unexpected behavior—for example, if a new
channel is added to a sampling group the data file will be corrupted because the channels will be
misaligned.
Some parameters (such as threshold) are only recorded once at beginning of the file and changing
these parameters may not be visible to data playback tools. Custom events or comments may be
used to record such changes and customize the data playback tool.

Inputs

channel channel number

<key, value>
'instance' Library instance, numbered 0 (default) to 3.
'userflags' User supplied information about the channel.
‘smpgroup’ Number from 0 to 5 indicating the continuous sampling rate

group the channel belongs to.
 Values correspond to the following sampling rates:
 0 – None
 1 – 500Hz
 2 – 1kHz
 3 – 2kHz
 4 – 10kHz
 5 – 30kHz

‘smpfilter’ Number from 0-16 defining the continuous Butterworth
filter to apply to the specified channel.

 Values correspond to the following filter values:
 0 – None
 1 – 750Hz High pass
 2 – 250Hz High pass

3 – 100Hz High pass
4 – 50Hz Low pass
5 – 125Hz Low pass
6 – 250Hz Low pass
7 – 500Hz Low pass
8 – 150Hz Low pass
9 – 10Hz-250Hz Band pass

Revision 3.00 / LB-0590

14

10 – 2.5kHz Low pass
11 – 2kHz Low pass
12 – 250Hz-5kHz Band pass
13 to 16 are reserved for user defined filters created using
the Digital Filter tool and loaded through Central.

'spkfilter’ Number from 0 – 16 defining the spike butterworth filter to

apply to the specified channel. Input values and their
corresponding filter values are the same as above in
‘smpfilter.’

'spkgroup' Number indicating the nTrode group to which the channels
belong.

'spkthrlevel' String containing the voltage requested. E.g. ‘-100uV’
'amplrejpos' String indicating the positive value over which spikes will be

rejected.
'amplrejneg' String indicating the negative value under which spikes will

be rejected.
'refelecchan' Channel number to subtract from this channel for

reference.

Outputs

config_cell_array: Previous parameters. Each row in this matrix contains:
<key> [value]

Examples

% Get full configuration of channel 4

config = cbmex('config', 4)

% Set threshold of the channel 5 to +500mV

cbmex('config', 5, 'spkthrlevel', '500mV')

% Get full configuration of channel 6, and set its new threshold to -

65uV

config = cbmex('config', 6, 'spkthrlevel', '-65uV')

% Set amplitude reject to +-1V for channel 5

cbmex('config', 5, 'amplrejpos', 1000, 'amplrejneg', -1000)

Revision 3.00 / LB-0590

15

TRIALCONFIG
[<active_state>, <config_vector_out>] = cbmex('trialconfig', active, <config_vector_in>, <key,
value>)

Use this command to initialize the trial and set cbMEX to start or stop buffering data. The initial
call to ‘trialconfig’ with active set to 1 will begin buffering data for collection while subsequent
calls with active set to 1 will flush the buffer. Flushed data cannot be retrieved. Before you call
‘trialconfig,’ be aware of whether there is new data waiting in the buffer to be collected. For
further information please see the description for ‘trialdata.’

Inputs
active 1 - flushes the data cache and starts buffering data

0 - stops buffering data

config_vector_in: Vector that can be used to configure inputs from the digital

input or serial input port to begin a trial and to end a trial.
[begchan begmask begval endchan endmask endval]

begchan Specifies the channel used to start a trial and start buffering
data

begmask Specifies the hex mask to apply to the digital data to start a
trial and start buffering data

begval Specifies the hex value the digital data must match to start
a trial and start buffering data

endchan Specifies the channel used to end a trial and stop buffering
data

endmask Specifies the hex mask to apply to the digital data to end a
trial and stop buffering data

endval Specifies the hex value the digital data must match to end a
trial and stop buffering data

<key, value>
'instance' Library instance, numbered 0 (default) to 3
'double' No value required. When specified, the data is in double

precision format and timestamps are represented in
seconds rather than as sample numbers

'absolute' No value required. Event timing is absolute (setting 'active'
to 1 will not reset time for events) and so time will not be
relative to the start of the trial

'noevent' No value required. The event data cache is not created nor
configured (same as 'event', 0)

'nocontinuous' No value required. If specified, a continuous data cache is
not created nor configured (same as 'continuous', 0)

'continuous' Set the number of continuous data points to be
cached/buffered for each channel in the trial. Defaults to

Revision 3.00 / LB-0590

16

102400 sample points per channel if not set and
'nocontinuous' is not used.

'event' Set the number of events to be cached/buffered in a trial.
Defaults to 2097152 events encompassing all channels if
not set and 'noevent' is unused.

‘comment’ Number indicating the number of comments to store in the
buffer.

‘tracking’ 0 or 1 indicating disabled (0) or enabled (1)

Outputs
active_state Return 1 if data collection is active at the time that

‘trialconfig’ is called, 0 otherwise (i.e., the initial call of
‘trialconfig’ after starting cbMEX results in active_state = 0).

config_vector_out: Vector specifying the configuration state with the values

either entered or their defaults if not (e.g. 'continuous' will
be the number of sample points per channel to be buffered
or 0 if 'nocontinuous' was specified)

[begchan begmask begval endchan endmask endval double waveform
continuous event comment tracking]

Examples
% Stop data collection

cbmex('trialconfig', 0)

% Configure to return continuous data as double type and timestamps in

seconds

cbmex('trialconfig', 1, 'double')

% Configure to buffer only event data

cbmex('trialconfig', 1, 'nocontinuous')

% Configure to buffer 200000 continuous data points in the double format

cbmex('trialconfig', 1, 'double', 'noevent', 'continuous', 200000)

Revision 3.00 / LB-0590

17

TRIALDATA
[timestamps_cell_array, <time>, <continuous_cell_array>] = cbmex('trialdata', active, <key,
value>)

Reads the data currently stored in the buffer and optionally return it as MATLAB variables. The
buffer contains data stored since the trial started or the last time the data buffer was flushed,
including old data and new data added since the last call to ‘trialconfig’ if the data buffer was not
flushed.

It is advisable to flush the data cache frequently, by calling either cbmex('trialconfig', 1) or
cbmex('trialdata', 1). If this call to ‘trialdata’ cleared the buffer (active set to 1),<time> is the time at
which the previous buffer started. The time is set for the next call to ‘trialdata.’

If you change the sampling rate on a given channel, its values are erased so the next time you call
‘trialdata’ be aware that sample values on different channels may not be in alignment because
of the data reset and the different sampling rates.

Inputs
Active 0 - (default) leave buffer intact (do not clear the buffer)

1 - clear all the data and reset its recording time to the
current time

<key, value>

'instance' Library instance, numbered 0 (default) to 3.

Outputs

timestamps_cell_array Timestamps for events of all of the channels consisting of
the front end amp channels, analog input channels, analog
output, audio output, digital input, and serial input. By
default, timestamps are returned as UINT32 representing a
sample number at a sampling rate of 30 kHz. If ‘double’
parameter is passed in ‘trialconfig,’ timestamps are
returned as seconds elapsed since trial start or since last call
of ‘trialconfig’ with active set to 1.

Each row in this matrix contains:
For spike channels:
'channel name' [unclassified timestamps_vector] [u1_timestamps_vector]
[u2_timestamps_vector] [u3_timestamps_vector] [u4_timestamps_vector]
[u5_timestamps_vector]
...u1-u5 are the spike sorting units per channel while unclassified is any spike not
sorted into a unit...

Revision 3.00 / LB-0590

18

For digital input channels
'channel name' [timestamps_vector] [values_vector] ...remaining columns are
empty...

time Time (in seconds) that the data buffer was most recently

 cleared.

continuous_cell_array An n x 3 cell array containing continuous sample data, n
being the number of channels configured to collect
continuous data (i.e., each row is a channel). By default,
continuous data values are returned as signed 16bit
integers (INT16), and any digital values are unsigned 16bit
integers (UINT16). If ‘double’ parameter was passed in
‘trialconfig,’ values are returned as double type.

Each row in this cell contains:
[channel number] [sample rate (in samples / s)] [values_vector]

Examples
% read event data, do not clear the buffer

event_data = cbmex('trialdata', 0);

% read event data, clear the buffer for the next trialdata

event_data = cbmex('trialdata', 1);

% read continuous data, time, and events, then clear the buffer

[event_data, t, continuous_data] = cbmex('trialdata', 1);

% read continuous data, then clear the buffer

[t, continuous_data] = cbmex('trialdata', 1);

Revision 3.00 / LB-0590

19

TIME
Time = cbmex(‘time’, <key, value>);

Returns the current NSP time in seconds. This command can optionally specify the time for
different instances (instruments) and report the time in terms of the number of samples that
have occurred.

The timer starts over when Reset is pressed in Central and also when recording starts.

Inputs
<key, value>

'instance' Library instance, numbered 0 (default) to 3.
'samples' No value required. Return the number of samples instead

of the time in seconds.

Outputs
time The time for the current instance (default instance is 0) in

either seconds or samples (default is seconds) since the
instrument was last reset.

Examples
% Get the current time for the default instance (instrument)

time = cbmex('time');

% Get the time for a specific instance in samples

time = cbmex('time', 'instance', 1, 'samples');

% Get the time in samples

time = cbmex('time', 'samples');

Revision 3.00 / LB-0590

20

DIGITALOUT
cbmex(‘digitalout’, channel, value, <key, value>);
cbmex(‘digitalout’, channel, <key, value>);

Sends a value to one of the Digital Out ports on the NSP as long as the port is not configured to
monitor a channel or set for timed output.

Inputs

channel 1 - (dout1)
2 - (dout2)
3 - (dout3)
4 - (dout4)

Value 1 - sets digital output to TTL high

0 - sets digital output to TTL low

<key, value>
'instance' Library instance, numbered 0 (default) to 3.
'monitor' Can be any combination of the following:

‘unclass’ - monitor unclassified spikes
'unit1' - monitor unit 1
'unit2' - monitor unit 2
'unit3' - monitor unit 3
'unit4' - monitor unit 4
'unit5' - monitor unit 5
'all' - monitor all units including unclassified

'track' No value required. Monitor the last tracked channel
'disable' No value required. Disable digital output
‘timed’ Can be any of the following:

‘frequency’ – input and value parameters are frequency and
offset

‘samples’ - input and value parameters are # of samples and
offset

'trigger' Trigger can be any of the following:
'off' - this trigger is not used
'instant' - Immediate trigger (immediate digital output
waveform)
'dinrise' - digital input rising edge
'dinfall' - digital input falling edge
'spike' - spike event on given input channel
'roi' - trigger based on neuromotive ROI (region of interest)

Revision 3.00 / LB-0590

21

'softreset' - trigger based on software reset (e.g. result of
file recording)

'input' Input depends on 'trigger' or 'timed'
If trigger is 'dinrise' or 'dinfall' then 'input' is bit number of
1 to 16 for first digital input
If trigger is 'spike' then 'input' is input channel with spike
data
If trigger is 'roi' then 'input' is the region of interest 1-4
If timed is 'frequency' then 'input' is timed frequency
If timed is 'samples' then 'input' is number of samples high

'value' Trigger value depends on 'trigger'
If trigger is 'roi' then 'value' is 1=enter, 2=exit
If trigger is 'spike' then 'value' is spike unit number (0 for
unclassified, 1-5 for first to fifth unit and 254 for any unit)
If timed is 'frequency' then 'value' is timed duty cycle
If timed is 'samples' then 'value' is number of samples low

‘offset’ offset of where to start timed output

Outputs

 None

Examples
% Sets dout1 to TTL high

cbmex('digitalout', 1, 1);

% Sets dout1 to TTL low

cbmex('digitalout', 1, 0);

% Sets dout3 to Monitor unit 1, 3, and 5 of channel 8 and track channels

cbmex('digitalout', 3, 'monitor', 'unit1 unit3 unit5', 'input', 8,

track');

% Sets dout2 to generate a 1000Hz waveform with a 20% duty cycle

cbmex('digitalout', 2, 'timed', 'frequency', 'input', 1000, 'value', 20);

% Sets dout2 to generate a waveform with 15 samples high and 30 low with

an offset of 30 samples

cbmex('digitalout', 2, 'timed', 'samples', 'input', 15, 'value', 30,

'offset', 30);

Revision 3.00 / LB-0590

22

CHANLABEL
label_cell_array = cbmex('chanlabel', <channels_vector>, <new_label_cell_array>, <key,
value>)

Get channel label(s) and optionally set new channel labels for given channel(s).

Inputs

<channels_vector> A vector of all the channel numbers to change. If not
specified, then all channels will be changed. The
new_label_cell_array must be of the same length as
channels_vector.

<new_label_cell_array> Cell array of new labels for each channel in the
channels_vector. Each string can be a maximum of 16
characters.

<key, value>
'instance' Library instance, numbered 0 (default) to 3.

Outputs

label_cell_array
For spike channels, each row in this matrix contains: 'channel label'
[spike_enabled] [unit1_valid] [unit2_valid] [unit3_valid] [unit4_valid]
[unit5_valid]
For digital input channels, each row in this matrix contains: 'channel label'
[digin_enabled] ...remaining columns are empty...

Note: In this version of cbmex, only Hoops unit validity is returned.

Examples
% Get all the channel labels

chan_labels = cbmex('chanlabel');

% Get channel label of channel 156

chan_label = cbmex('chanlabel', 156);

% Get channel label of digital and serial channels

chan_labels = cbmex('chanlabel', [151 152]);

% Set channel label of channel 5 to ch5

chan_labels = cbmex('chanlabel', 5, 'ch5');

% Set channel label of channel 6 to name

chan_labels = cbmex('chanlabel', 6, {'name'});

% Set labels for channels 5 and 6

chan_labels = cbmex('chanlabel', [5 6], {'e5' 'e6'});

% Get labels for channels 2 to 6

chan_labels = cbmex('chanlabel', 2:6);

Revision 3.00 / LB-0590

23

MASK

cbmex(‘mask', channel, <active = 1>, <key, value>)

Activate or deactivate data collection for specified channels. The mask is applied both to data
buffering (trialconfig) and to data retrieval (trialdata).

Inputs
<Channel> The channel number to mask. 0 indicates all channels.
<Active> 1 (default) to activate.

0 to deactivate.

<key, value>
'instance' Library instance, numbered 0 (default) to 3.

Outputs
None

Examples

% Activate all the channels

cbmex('mask', 0)

% Activate all the channels

cbmex('mask', 0, 1)

% Deactivate all the channels

cbmex('mask', 0, 0)

% Deactivate channel number 5

cbmex('mask', 5, 0)

Revision 3.00 / LB-0590

24

COMMENT
cbmex('comment', rgba, charset, comment, <key, value>);

Generate a comment or custom event. The comment appears on applications displaying comments
(such as Raster) and is recorded if file recording is active. The color parameter (rgba) can be used for
custom events.

Inputs
rgba Color coding or custom event number.

Common color codes:
black – 0
white – 16777215
red – 255
green – 65280
blue – 16711680
yellow – 65535
magenta – 16711935
cyan – 16776960

charset 0 - ASCII

1 - UTF16

comment Comment string (maximum 127 characters)

<key, value>
'instance' Library instance, numbered 0 (default) to 3.

Outputs

None

Examples

% Add white ASCII comment

cbmex('comment', 16777215, 0, 'my comment');

% Add green ASCII comment

cbmex('comment', 65280, 0, 'my comment');

% Add red UTF16 comment

cbmex('comment', 255, 1, 'my comment');

Revision 3.00 / LB-0590

25

ANALOGOUT
cbmex('analogout', channel, <key, value>)

Inputs

Channel 1 - (aout1)
 2 - (aout2)

3 - (aout3)
4 - (aout4)
5 - (audout1)
6 - (audout2)

<key, value>

'instance' Library instance, numbered 0 (default) to 3.
'pulses' Waveform vector in format: [nPhase1Duration

nPhase1Amplitude nInterPhaseDelay nPhase2Duration
nPhase2Amplitude nInterPulseDelay]

'sequence' Waveform is variable length vector of duration and
amplitude. Waveform format is [nDuration1 nAmplitude1
nDuration2 nAmplitude2 ...]
Waveform must be a nonempty even-numbered vector of
double-precision numbers.
Each duration must be followed by amplitude for that
duration Durations must be positive and indicate number of
samples. Amplitudes are given in binary and range from -
32767 for -5V and +32767 for 5V. Each duration-amplitude
pair is a phase in the waveform

'sinusoid' Waveform is vector [nFrequency nAmplitude]
'monitor' Can be either: 'spike', or 'continuous'

'spike' - spikes on 'input' channel are monitored
'continuous' - continuous 'input' channel is monitored

'track' No value required. Monitor the last tracked channel
'disable' No value required. Disable analog output
'offset' Amplitude offset
'repeats' Number of repeats. 0 (default) means non-stop
'index' Trigger index (0 to 4) is the per-channel trigger index

(default is 0)
'trigger' Trigger can be any of the following: 'instant' (default),

'dinrise', 'dinfall', 'spike', 'cmtcolor', 'softreset'
'instant' - immediate trigger (immediate analog output
waveform)
'dinrise' - digital input rising edge
'dinfall' - digital input falling edge
'spike' - spike event on given input channel

Revision 3.00 / LB-0590

26

'cmtcolor' - trigger based on colored comment
'softreset'- trigger based on software reset (e.g. result of file
recording)

'input' Input depends on 'trigger' or 'monitor'
If trigger is 'dinrise' or 'dinfall' - 'input' is bit number of 1 to
16 for first digital input
If trigger is 'spike' - 'input' is an input channel with spike
data
If trigger is 'cmtcolor' - 'input' is the high word (two bytes)
of the comment color
If monitor is 'spike' - 'input' is an input channel with spike
processing
If monitor is 'continuous' - 'input' is an input channel with
continuous data

‘value' Trigger value depends on 'trigger'
If trigger is 'cmtcolor' then 'value' is the low word (two
bytes) of the comment color
If trigger is 'spike' then 'value' is spike unit number (0 for
unclassified, 1-5 for first to fifth unit and 254 for any unit)

'mv' No value required. If specified, voltages are considered in
millivolts instead of raw integer value

'ms' No value required. If specified, intervals are considered in
milliseconds instead of samples

Outputs

None

Examples

% Output a ½ second -5V output followed by a 1 second +5V output,

followed by 0V for 2 seconds which it will repeat 5 times.

cbmex('analogout', 1, 'sequence', [15000,-32767,30000,32767,60000,0],

'repeats', 5);

% Output a 10Hz, 5V amplitude sinusoidal signal

cbmex('analogout', 1, 'sinusoid', [10,32767]);

% Output a ½ second -5V output followed by a 1 second +5V output,

followed by 0V for 2 seconds, triggered by spike activity on channel 5

cbmex(‘analogout', 1, ‘sequence', [15000,-32767,30000,32767,60000,0],

'trigger','spike','input',5);

Revision 3.00 / LB-0590

27

TRIALCOMMENT
[<comments_cell_array>, <timestamps_vector>, <rgba_vector>, <charset_vector>] =
cbmex('trialcomment', <active = 0>, <key, value>)

Retrieve comments configured by ‘trialconfig’

Inputs

active: 0 - (default) leaves buffer intact
1 - clears all the data and reset the trial time to the current
time

<key, value>

'instance' Library instance, numbered 0 (default) to 3.

Outputs
comments_cell_array Cell-array of comments (strings of possibly different sizes)
timestamps_vector Timestamps of the comments
rgba_vector Comment colors

Common colors:
black – 0
white – 16777215
red – 255
green – 65280
blue – 16711680
yellow – 65535
magenta – 16711935
cyan – 16776960

charset_vector Character set vector for comments:
0 - ASCII
1 - UTF16

Examples
% Receive the comments, an equal number of timestamps, a color identity

for each comment, and the character set used for each comment and flush

the buffer.

[Comments, Timestamps, Colors, CharacterSet] = cbmex(‘trialcomment’, 1)

Revision 3.00 / LB-0590

28

TRIALTRACKING
[tracking_cell_array] = cbmex('trialtracking', <active = 0>, <key, value>)

Retrieve NeuroMotive tracking data configured by ‘trialconfig’

Inputs
active 0 - leave buffer intact

1 - clear all data in the buffer and reset the trial time to the
current time.

<key, value>
'instance' Library instance, numbered 0 (default) to 3.

Outputs

tracking_cell_array: Each row in this matrix contains:
['trackable_name' desc_vector timestamps_vector
synch_timestamps_vector synch_frame_numbers_vector
rb_cell_array]

Decription of output:
desc_vector column vector [type id max_point_count]
type 1 (2DMARKERS), 2 (2DBLOB), 3 (3DMARKERS), 4

(2DBOUNDARY)
id node unique ID
max_point_count maximum number of points for this trackable
timestamps_vector the timestamps of the tracking packets
synch_timestamps_vector synchronized timestamps of the tracking (in milliseconds)
synch_frame_numbers_vector

synchronized frame numbers of tracking
rb_cell_array each cell is a matrix of rigid-body, the rows are points,

columns are coordinates

Examples
%Pull current buffer tracking data and clear the buffer

[Tracking_Data] = cbmex(‘trialtracking’,1)

Revision 3.00 / LB-0590

29

CCF

cbmex('ccf', filename, <key, value>);

Read, write and send CCF configuration file.

Inputs

filename CCF filename to read. Read from NSP if it is zero length
string (i.e. '')

<key, value>

'instance' Library instance, numbered 0 (default) to 3.
‘load’ Value is a filename string. Specifies the input filename for

‘convert’.
'send' Value is a filename string. Read and send CCF file to the NSP.
'convert' Value is a filename string. Read and Convert CCF file to a

new CCF file in the latest format (must also specify ‘load’ to
specify the input filename)

‘save’ Value is a filename string. Saves the NSP’s current
configuration as a new CCF.

‘threaded’ No value needed. Specifies that a send command is to run
in its own thread.

Outputs

None

Examples

% Send \ccf-files\mydefault.ccf to the NSP

cbmex('ccf', 'send', '\ccf-files\my-default.ccf');

% Send \ccf-files\mydefault.ccf to the NSP in its own thread

cbmex('ccf', 'send', '\ccf-files\my-default.ccf', 'threaded');

% Convert \ccf-files\old.ccf to \ccf-files\new.ccf

cbmex('ccf', 'load', '\ccf-files\old.ccf', 'convert', '\ccf-

files\new.ccf');

% Save the current settings to \ccf-files\save.ccf

cbmex('ccf', 'save', '\ccf-files\save.ccf');

Revision 3.00 / LB-0590

30

SYSTEM
cbmex('system', command, <key, value>)

Perform given cbMEX system command.

Inputs

command Can be any of the following:
'reset'- resets instrument
'shutdown' - shuts down instrument
'standby' - sends instrument to standby mode

<key, value>
'instance' Library instance, numbered 0 (default) to 3.

Outputs

None

Examples
% Shutdown the NSP

cbmex(‘system’, ‘shutdown’);

% Reset the NSP

cbmex(‘system’, ‘reset’);

% Reset the NSP

cbmex(‘system’, ‘standby);

Revision 3.00 / LB-0590

31

Using cbMEX on OSX

cbMEX can function on OSX operating systems using files available for download from the
Blackrock Microsystems Helpdesk. This .zip file contains the necessary files and libraries for
cbmex to work on OSX. Instructions for use of these files can be found below.

On the OSX computer, configure the instrument port to the following address:
IP: 192.168.137.X (X can be any number between 1-16 not already on the network)
Subnet: 255.255.255.0

Inside the .zip file will be three files.

-cbmex.mexmaci64
-QtCore
-QtXml

cbmex.mexmaci64 is the mex file (cbmex) that will be interfacing with the Neural Signal
Processor. QtCore and QtXml are MATLAB libraries that need to be placed in the correct file
path.

From finder, navigate to the following folder:

/usr/lib

Place both QtCore and QtXml into this folder. They should not be in there initially, so there is no
need to overwrite anything, but you will need administrator access (Note: MacOS 10.11+ has
System Integrity Protection protecting the lib folder. SIP will need to be temporarily disabled for
installation).

Once these are placed, make sure the /usr/lib folder are in the MATLAB search path and then
attempt cbmex('open'). By default, MacOX allows much less memory in these spaces than
Windows, so a memory error may be encountered. To address this, open the terminal and
enter the following commands:

sudo sysctl -w kern.sysv.shmmax=33554432

sudo sysctl -w kern.sysv.shmall=4194304

Then, attempt to change max.sockbuf:

sudo sysctl -w kern.ipc.maxsockbuf=8388608

At this point, cbMEX should be ready to open. Enter the following command in MATLAB:

http://support.blackrockmicro.com/GetAttachment.ashx?FileID=121775

Revision 3.00 / LB-0590

32

cbmex('open','receive-buffer-size',6291456,'inst-addr', '192.168.137.128',

'inst-port', 51001, 'central-addr', '255.255.255.255', 'central-port', 51002)

After you have opened the interface, all other commands can be used normally.

If there are any issues with version compatibility, please contact Blackrock Support.

Revision 3.00 / LB-0590

33

Troubleshooting

Unable to Allocate Shared Memory
Attempting to open Central after connecting cbMEX to the NSP through UDP results in two
successive error messages:

The host PC is unable to open two separate connections through UDP and Central to the NSP
simultaneously. Either connect solely through UDP without having Central running or close the
UDP connection to the NSP, open Central, then run cbmex(‘open’) to connect cbMEX through
Central.

Unable to Open Instrument Network

After opening non-default cbMEX instances through UDP, the instance will persist and even
after closing cbMEX, Central will give the following error message on attempts to open Central
with the default instance. Closing MATLAB or executing clear all in the MATLAB command
window will allow Central to open normally.

Other Connection Errors

Revision 3.00 / LB-0590

34

If you receive either of these errors, check that your firewall exceptions include Central.exe and
MATLAB.

In addition, verify that the real-time interface version (displayed in the MATLAB command line
output) and the NSP firmware version (shown on the NSP’s display on startup) are compatible.
If you have any questions about firmware compatibility or require an older Central/cbMEX
version, please email support@blackrockmicro.com.

mailto:support@blackrockmicro.com

Revision 3.00 / LB-0590

35

Warranty
Blackrock Microsystems (“Blackrock”) warrants its products are free from defects in materials
and manufacturing for a period of one year from the date of shipment. At its option, Blackrock
will repair or replace any product that does not comply with this warranty. This warranty is
voided by: (1) any modification or attempted modification to the product done by anyone other
than an authorized Blackrock employee; (2) any abuse, negligent handling or misapplication of
the product; or (3) any sale or other transfer of the product by the original purchaser.

Except for the warranty set forth in the preceding paragraph, Blackrock provides no warranties
of any kind, either express or implied, by fact or law, and hereby disclaims all other warranties,
including without limitation the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement of third-party patent or other intellectual property rights.

Blackrock shall not be liable for special, indirect, incidental, punitive, exemplary or
consequential damages (including without limitation, damages resulting from loss of use, loss of
profits, interruption or loss of business or other economic loss) arising out of non-compliance
with any warranty. Blackrock’s entire liability shall be limited to providing the remedy set forth
in the previous paragraph.

Support
Blackrock prides itself in its customer support. For additional information on this product or any
of our products, you can contact our Support team through the contact information below:

Manuals, Software Downloads, and Application Notes
www.blackrockmicro.com/technical-support

Issues or Questions
www.blackrockmicro.com/technical-support
support@blackrockmicro.com
U.S. - +1.801.839.1062
Europe - +49 (0)511.132.211.10

http://www.blackrockmicro.com/technical-support
http://www.blackrockmicro.com/technical-support
mailto:support@blackrockmicro.com

Revision 3.00 / LB-0590

36

Example Scripts

Display Number of Channels with Spike Activity

% Author and Date: Stephen Hou 21 March 2017
% Copyright: Blackrock Microsystems
% Workfile: NumSpikeChans.m
% Purpose: Count/display number of channels with spike activity

close all;
clear variables;

cbmex('open') %open library
cbmex('trialconfig',1) %initialize data buffering

trial_length=10; %length of time to run the script
snippet_length=0.5; %length in seconds of data snippet to read during

%each read/flush buffer cycle
num_cycle=1; %start with cycle number 1
current_time=tic; %set current time

%while elapsed time is smaller than the trial length
while (trial_length>toc(current_time))
 pause(snippet_length);
 [event_data time cont]=cbmex('trialdata',1); %read/clear data
 counter = 0; %number of channels displaying spike activity

 %iterate through all channels; check for spike activity

 for i=1:length(event_data)
 if ~isempty(event_data{i,2})
 counter = counter+1;
 end
 end
 disp(sprintf('Cycle %d: Spike activity on %d channels',num_cycle,...
 counter));
 num_cycle = num_cycle+1;
end

cbmex('close');

Revision 3.00 / LB-0590

37

Real-Time Spectrum Display

% Author and Date: Ehsan Azar 14 Sept 2009
% Copyright: Blackrock Microsystems

% Workfile: RealSpec.m
% Purpose: Realtime spectrum display. All sampled channels are displayed.

close all;
clear variables;

f_disp = 0:0.1:15; % the range of frequency to show spectrum over.
% Use f_disp = [] if you want the entire spectrum

collect_time = 0.1; % collect samples for this time
display_period = 0.5; % display spectrum every this amount of time

cbmex('open'); % open library

proc_fig = figure; % main display
set(proc_fig, 'Name', 'Close this figure to stop');
xlabel('frequency (Hz)');
ylabel('magnitude (dB)');

cbmex('trialconfig', 1); % empty the buffer

t_disp0 = tic; % display time
t_col0 = tic; % collection time
bCollect = true; % do we need to collect
 % while the figure is open
while (ishandle(proc_fig))

 if (bCollect)
 et_col = toc(t_col0); % elapsed time of collection
 if (et_col >= collect_time)
 [spike_data, t_buf1, continuous_data] = cbmex('trialdata',1); %

read some data
 nGraphs = size(continuous_data,1); % number of graphs
 % if the figure is still open
 if (ishandle(proc_fig))
 % graph all
 for ii=1:nGraphs
 fs0 = continuous_data{ii,2};
 % get the ii'th channel data
 data = continuous_data{ii,3};
 % number of samples to run through fft
 collect_size = min(size(data), collect_time * fs0);
 x = data(1:collect_size);
 %uncomment to see the full rang
 if isempty(f_disp)
 [psd, f] =

periodogram(double(x),[],'onesided',512,fs0);
 else
 [psd, f] = periodogram(double(x),[],f_disp,fs0);
 end

Revision 3.00 / LB-0590

38

 subplot(nGraphs,1,ii,'Parent',proc_fig);
 plot(f, 10*log10(psd), 'b');title(sprintf('fs = %d t =

%f', fs0, t_buf1));
 xlabel('frequency (Hz)');ylabel('magnitude (dB)');
 end
 drawnow;
 end
 bCollect = false;
 end
 end

 et_disp = toc(t_disp0); % elapsed time since last display
 if (et_disp >= display_period)
 t_col0 = tic; % collection time
 t_disp0 = tic; % restart the period
 bCollect = true; % start collection
 end
end
cbmex('close'); % always close

Revision 3.00 / LB-0590

39

Pulse DigOut on Specific Value from Serial

% Author & Date: Hyrum L. Sessions 14 Sept 2009
% Copyright: Blackrock Microsystems

% Workfile: DigInOut.m
% Purpose: Read serial data from the NSP and compare with a
% predefined value. If it is the same, generate a
% pulse on dout4
%
% This script will read data from the NSP for a period of 30 seconds. It
% is waiting for a character 'd' on the Serial I/O port of the NSP. If
% received it will generate a 10ms pulse on Digital Output 4

% initialize
close all;
clear variables;

run_time = 30; % run for time
value = 100; % value to look for (100 = d)
channel_in = 152; % serial port = channel 152, digital = 151
channel_out = 4; % dout 1 = 1, 2 = 2, 3 = 3, 4 = 4

t_col = tic; % collection time

cbmex('open'); % open library
cbmex('trialconfig',1); % start library collecting data

start = tic();

while (run_time > toc(t_col))
 pause(0.05); % check every 50ms
 t_test = toc(t_col);
 spike_data = cbmex('trialdata', 1); % read data
 found = (value == spike_data{channel_in, 3});
 if (0 ~= sum(found))
 cbmex('digitalout', channel_out, 1);
 pause(0.01);
 cbmex('digitalout', channel_out, 0);
 end
end

% close the app
cbmex('close');

