630 Komas Drive | Suite 200

Salt Lake City | UT 84108 | USA BLACKROCK®

P +1801.582.5533 | F +1 801.582.1509 MICROSYSTEMS
www.blackrockmicro.com

Python
Offline Utilities

[
Revision 2.00 / LB-0826 — Python Offline Utilities

Table of Contents

INtrodUCtion.....cccuuiiiiiiiiiiiir e a s eaas 3
CT=Y 4 419 V=33 - T =T o [P 3
Vo T LT | L= 6
o] 1Y TR of o K3 o Y S 6
function openfilecheck ..o, 6
function checkequalcoovvuiiiiiiiiiii e 6
o180}V 11 o T4 o V2SS 7
ClaSS NEVFIl@ .o 7

ol Lo R N S T T U 9
EXample SCripts...cciuiiiiiiiiiiiiiiiiieiieiiiciesseee e seessnssseesssnssssnssens 11
example WrtENSX tOTXE.PY.cuuii i 11
example_extract_spike _data.pyccccceeerieerieeeiiiiiee e, 11
example_Save SUDSEt NSX.PY...ccrieeieieririiiieeeeeiiiiieeeeeeeree e e eeerne e 11
Y] 0] o To T o R 12

[
Revision 2.00 / LB-0826 — Python Offline Utilities 2

Introduction

Blackrock Microsystems provides a set of Python utilities to extract and plot data saved in NEV
and NSx datafiles. These utilities were built using the Anaconda distribution of Python 2.7 and
3.5 and have some dependencies as noted throughout this manual.

Blackrock Microsystems data are saved in two types of files:
e NEV: Short for Neural EVents, contains events recorded during an experimental session.

These events may include information on threshold crossed spike waveforms,
information received through the digital input and the serial input, tracking information
recorded in NeuroMotive Video Tracking System, text comments, or other custom
comments sent to the NSP during an experiment.

e NSx: Short for Neural Stream X, where X indicates the sampling frequency of the
continuous file. This data type contains continuous streamed data from the NSP.
Depending on the sampling frequency, a second of data may contain up to 30,000
samples in this file.

NS1: Data sampled at 500 Hz

NS2: Data sampled at 1 kHz

NS3: Data sampled at 2 kHz

NS4: Data sampled at 10 kHz

NS5: Data sampled at 30 kHz

o O O O

File Specifications (Format)

The data files can be recorded in various file specifications. Refer to LB-0023 NEV File Format
available on the Blackrock Microsystems website for details on what each file format contains.
Blackrock Microsystems recommends using the latest file format to record your data.

Getting Started

The brPY .zip folder contains folders that contain the Windows versions and OSx versions of the
brPY libraries. The loader consists of two libraries: brMiscFxns.py and brpylib.py.

To get started using brPY, move brMiscFxns.py and brpylib.py into the libraries folder of your
Python distribution. Please see the documentation of your specific Python distribution to find
the correct filepath to move the libraries into.

The Python loader consists of two classes: NsxFile and NevFile, which open and extract
continuous neural data and neural event data, respectively, as well as experimental setup

|
Revision 2.00 / LB-0826 — Python Offline Utilities 3

https://www.continuum.io/downloads
http://blackrockmicro.com/technical-support/instruction-manuals/

information in the headers. Both the NsxFile and NevFile classes contain a getdata() function,
which is used to extract data from the .nsx or .nev file. The following examples demonstrate the
use of NsxFile’s getdata() function to extract continuous data, then writes it to a .txt file.

from brpylib import NsxFile

datafile = 'C:/Users/MaxPower/Desktop/sampledata/sampleData/" \
‘sampleData.ns3’

elec_ids = [1, 15, 2, 28, 5]
start_time s = 1

nsx_file = NsxFile(datafile)

Before beginning to load data, you must import the relevant functions from brpylib. In this
example, we have specified the exact filepath in the command to open a file. If you do not
specify a filepath or specify an invalid filepath, you will be prompted in the console to either
enter a complete file path or hit enter to bring up a file selection window:

Enter complete .ns* file path or hit enter to browse:

After the .ns5 file has been opened, data we want can be extracted from the file. Previously,
two of getdata’s optional parameters (the electrodes we want data from, and the time in
seconds we want to start data extraction from) were defined and we will use them here to
narrow the scope of the data we will be extracting. Then, after we have finished extracting the
data, the .nsx file is closed.

cont_data = nsx_file.getdata(elec_ids, start time s)

nsx_file.close()

getdata() creates an ordered dictionary with data parameters and the data array. More
information on the fields created by getdata() and the optional parameters that can be passed
are found in the section on getdata() later in the IFU. By default, cont data['data'] will
be an N-by-M numpy array, where N is the number of channels and M is the number of
samples.

[
Revision 2.00 / LB-0826 — Python Offline Utilities 4

cont_data - Dictionary (8 elements) — O *

Kg}r Type Size Value
éEx‘tendedHeader‘Indices élist 5 [e, 1, 4, 14, 19]
data float3z (5, 239212) array“% 225’ 61.23, B4 4 eese
data_headers 1ist 1 Fi;:::z:;;}- :lé}:'ll"lumDataPuints' : 241212,
data_time_s float 1 119.686
downsample int 1 1
elec_ids list 5 [1, 2, 5, 15, 28]
samp_per_s float 1 20640.8
start_time_s float 1 1.8

Cancel

To export this data to a text file, we open a text file in write-mode and then iterate over the
channel and sample indices of cont datal'data'], and then close the text file once we
are done:

data txt = open("output.txt™,"w")

for j in range(0,cont_data['data’].shape[1]):
for 1 in range(®,cont_data["data’'].shape[8]):
data txt.write("%F\t" % cont_data['data’'][1][]])
if i==cont_datal 'data’'].shape[0]-1:
data_txt.write("'\n")

data txt.close()

This results in a text file named output.txt in your Python distribution’s working path. Each
column of the text file corresponds to a specific channel’s data.

[
Revision 2.00 / LB-0826 — Python Offline Utilities 5

Modules

brMiscFxns.py

This library contains miscellaneous functions that are useful in many classes and scripts, and
may be required by other modules (e.g., brpylib). Current version: 1.2.0

Dependencies
¢ 0s ° qtpy

function openfilecheck()

Used to open a file in a specified manner.

Usage: openedFile = openfilecheck (open mode, file name='",
file ext="'"', file type='")
Inputs: open_mode: {str} how to open the file. (open_mode="rb’ for read binary)

file_name: [optional] {str} complete path and name of file to open
file_ext: [optional] {str} extension for file type to open. (file_ext=".pdf’)
file_type: [optional] {str} type of file to open. file_type = ‘PDF Files’)

Return: opened File object

function checkequal()
Used to check if all values within an iterator (often a list) are equal.

Usage: checkequal (iterator)

Inputs: iterator: {list}, {dict} iterator object
Return: Boolean

Revision 2.00 / LB-0826 — Python Offline Utilities 6

brpylib.py

This library contains classes and functions for extracting information contained in NEV and
NSx files saved using Blackrock Microsystems data acquisition systems. For more detailed
information on all the basic and extended header fields contained in the NsxFile and NevFile
objects, refer to LB-0023 NEV File Format available on the website. Current version: 1.3.0

Dependencies
e future__ e collections e math e o0s
e brMiscFxns e datetime e numpy e struct

class NevFile()
Object representing all experimental setup information (headers) and data stored in the
NEV file. If nofile is passed using the datafile parameter, a prompt will ask for a file
name or request to browse to an NEV file. Basic and extended headers will be extracted
during initialization.
Usage: NevFileObj = NevFile (datafile)
Inputs: datafile — [optional] {str} complete path to NEV file
Return: NevFileObj containing opened datafile, extracted basic header and extendedheaders

basic_header
The basic timing, creation, and comment information of the file.

datafile
The currently opened NEV file. It is recommended to run
NevFileObj.datafile.close() after all data is extracted.

extended_headers
Extended headers provide specific experimental information for the different data
types stored in NEV files. Some data, such as for neural events, will have multiple
extended headers for each channel (waveform and label information for neural
data).

function getdata()
Returns event data for all the different possible data contained in NEV files.
Usage: output = NevFileObj.getdata(elec ids='all')
Inputs: elec_ids — [optional] [list] of neural channel ids to extract. (elec_ids=[1, 2])
wave_read -[optional] {str} Specifies whether or not to read the spike waveforms.
Default is to read the waveforms. (wave_read="noread’, wave_read="read’)
Return: output — Dictionary with one or more of the following dictionaries. All dictionaries
will include a list of Timestamps.
dig_events: Dictionary of digital events containing Reason = ‘parallel’ or ‘serial’,
lists of timestamps, and lists of data values, where indexing to the lists is
based on the Reason.

[
Revision 2.00 / LB-0826 — Python Offline Utilities 7

Note: Serial data will already be in a single byte format with the upper byte of
the 16-bit stored digital value having been stripped off.
Note: For file spec 2.2 and below, AnalogData and AnalogDataUnits will be
also be included.
spike_data: Dictionary of neural spike events containing Units="nV’ and lists of
ChannellD, TimeStamps, ExtendedHeaderlndices, Classification, and
Waveforms. TimeStamps, Classifications, and Waveforms will be 2D array
where indexing into the array will give the data for ChannellD[index]. If
wave_read = ‘noread’ is passed, Waveforms will be empty.
comments: Dictionary of comment event data containing lists of TimeStamps,
CharSet, Flag, and comment strings.
video_sync_events: Dictionary of video sync event data containing lists of
TimeStamps, VideoFileNum, VideoFrameNum, VideoElapsedTime_ms, and
VideoSource.
tracking_events: Dictionary of tracking event data containing Parent and Node
ID, TimeStamps, Node and Point Count, and tracking points.
button_trigger_events: Dictionary of event data containing TimeStamps and
TriggerType.
configuration_events: Dictionary of configuration event data containing
TimeStamps, ConfigChangeType, and the string of what configuration change
occurred.
Dependencies: none
Note: when passing elec_ids, all digital events and other data contained in NEV (e.g.,
tracking data) will still be extracted. Only neural waveforms for channels not in
elec_ids will be excluded.

function processroicomments()
Returns region of interest (ROI) data processed into a Dictionary of Regions, Enter
event timestamps, and Exit event timestamps.

Usage:
roli events = NevFileObj. processroicomments (comments)

Inputs: comments — Dictionary returned from getdata().
Dependencies: function getdata()

[
Revision 2.00 / LB-0826 — Python Offline Utilities 8

class NsxFile()
Object representing all experimental setup information (headers) and data stored in the
various NSx files. If no filename is passed using the file parameter, datdfile, a prompt
will ask for a file name or request to browse to an NSx file.
Usage: NsxFileObj = NsxFile (datafile)
Inputs: datafile — [optional] {str} complete path to NSx file

Return: NsxFileObj containing opened datafile, extracted basic header and extended
headers

basic_header
The basic timing, creation, and comment information of the file.

datafile
The currently opened NSx file. It is recommended to run
NsxFile.datafile.close () after all data is extracted.

extended_headers
Each channel will have its own extended header with additional information such as
electrode labeling, digitization factor, and filtering specs.

function getdata()
Returns a dictionary containing data parameters and a 2D array of data.
Usage: output = NsxFileObj.getdata(elec ids='all',
start time s=0, data time s='all' ,
downsgmplezl) B B
Inputs: elec_ids — [optional] [list] of neural channel ids to extract. (elec_ids=[1, 2]).
If specific elec_ids do not exist in the data, only those that do will be returned,
along with a warning.
start_time_s — [optional] {float} Starting time for data extraction in
seconds. (start_time_s = 1.0)
data_time_s — [optional] {float} Length of time of data to return.
(data_time_s =30.0)
downsample — [optional] {int} Downsampling factor (downsample = 2)
Return: output — Dictionary containing the following:
data_headers: The timestamp and number of data points for each
data packet saved in the file. There will only be more than one data header
when pausing is used, which will result in 0-padded data during pauses.
elec_ids: List of extracted electrode ids (sorted).
start_time_s: {float} Starting time for data extraction into file.
data_time_s: {float} Length of time of all data extracted.
downsample: {int} The downsampling factor of the data, used to reduce data
extraction size for large data files.
samp_per_s: {float} The samples per second of the returned data
data: 2D numpy array of continuous data. Indexing into the data will

[
Revision 2.00 / LB-0826 — Python Offline Utilities 9

return the data for elec_ids[index].
ExtendedHeaderlndices: List containing the extended header indices of
the electrodes specified in elec_ids. If elec_ids is not passed, this will
be [0]
Dependencies: none
Example: NSxFile.getdata([5, 6, 7, 8, 9, 101, 1, 30, 2)-
returns 30 seconds of data starting from one second into the data file for
channels 5-10 with a downsample factor of two.
Note: If bad parameters are passed, such as an invalid start_time_s or non-
existant elec_ids, a warning will be displayed and parameters may be altered
accordingly.

function savesubsetnsx()
Used to save a subset of data based on electrode IDs, file sizing, or file data time. If
both file_time_s and file_size are passed, it will default to file_time_s and determine
sizing accordingly.
Usage: NsxFileObj.savesubsetsx(elec ids='all',
file size=None, file time s=None, file suffix='")
Inputs: elec_ids — [optional] [list] of neural channel ids to extract. (elec_ids=[1, 2]).
If specific elec_ids do not exist in the data, only those that do will be returned,
along with a warning.
file_size — [optional] {in t} Byte size of each new file to save. If nothing
is passed, file_size will be all data points. (e.g., 1024**3 = 1 Gb).
file_time_s — [optional] {float} Time length of data for each new file, in
seconds. If nothing is passed, file_size will be used as default.
file_suffix — [optional] {str} Suffix to append to NSx datafile name for new
files. If nothing is passed, default will be "_subset".
Return: None - None of the electrodes requested exist in the data
“SUCCESS” - All file subsets extracted and saved
Dependencies: none

Exanﬂﬂe:NsxFileObj.savesubsetnsx(elec_ids:[l, 2, 20, 2007,
file time s=30, file suffix='elecAndTime subset')

saves a set of data files that each have 30 seconds of data extracted sequentially
for electrode IDs 1, 2, 20, and 200, if they exist in the data.

Note: If bad parameters are passed, a warning will be displayed and parameters may
be altered accordingly.

Note: If the file name of the subset file already exists, an overwrite warning and
request is presented.

[
Revision 2.00 / LB-0826 — Python Offline Utilities 10

Example Scripts

example writeNSX_toTxt.py

This example shows how to extract data from NSx files and write it to a text file. Current
version: 1.0

Dependencies
e brpylib * numpy

example _extract_spike data.py

This example shows how to extract and plot spike waveforms saved in the NEV files.
Current version: 1.1.2

Dependencies
e brpylib e matplotlib e numpy

example _save _subset_nsx.py

This example shows how to extract and save a subset of data in a new set of NSx
files from data saved in an NSx file. This can be useful when very large data files are
created. Current version: 1.1.1

Dependencies
e brpylib

Revision 2.00 / LB-0826 — Python Offline Utilities 11

Support

Blackrock prides itself in its customer support. For additional information on this
product or any of our products, you can contact our Support team through the contact
information below:

Manuals, Software Downloads, and Application Notes
www.blackrockmicro.com/technical-support

Issues or Questions
www.blackrockmicro.com/technical-support
support@blackrockmicro.com
U.S.-+1.801.839.1062

Europe - +49 (0)511.132.211.10

[
Revision 2.00 / LB-0826 — Python Offline Utilities 12

http://www.blackrockmicro.com/technical-support
http://www.blackrockmicro.com/technical-support
mailto:support@blackrockmicro.com

